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Abstract—Autonomous Underwater Vehicles (AUVs) are an
increasingly important tool for oceanographic research
demonstrating their capabilities to sample the water column in
depths far beyond what humans are capable of visiting, and
doing so routinely and cost-effectively. However, control of
these platforms to date has relied on fixed sequences for
execution of pre-planned actions limiting their effectiveness for
measuring dynamic and episodic ocean phenomenon. In this
paper we present an agent architecture developed to overcome
this limitation through on-board planning using Constraint-
based Reasoning. Preliminary versions of the architecture have
been integrated and tested in simulation and at sea.

1. INTRODUCTION

Oceanography has traditionally relied on ship-based
observations. These have recently been augmented by
robotic platforms such as Autonomous Underwater Vehicles
(AUV) [1-3], which are untethered powered mobile robots
able to carry a range of payloads efficiently over large
distances in the deep ocean. A common design relies on a
modular tube-like structure with propulsion at the stern and
various sensors, computers and batteries taking up the bulk
of the tube (Fig. 1). AUVs have demonstrated their utility in
oceanographic research in gathering time series data by
repeated water-column surveys [4], detailed bathymetric
maps of the ocean floor in areas of tectonic activity [5,6] and
performed hazardous under-ice missions [7].

Typically AUVs do not communicate with the support
ship or shore while submerged and rely on limited stored
battery packs while operating continuously for tens of hours.
Current AUV control systems [8] are a variant of the
behavior-based Subsumption architecture [9]. A behavior is
a modular encapsulation of a specific control task and
includes acquisition of a GPS fix, descent to a target depth,
drive to a given waypoint, enforcement of a mission depth
envelope etc. An operator defines each plan as a collection
of behaviors with specific start and end times as well as
maximum durations, which are scripted a priori using simple
mission planning tools. In practice, missions predominantly
consist of sequential behaviors with duration and task
specific parameters equivalent to a linear plan with limited
flexibility in task duration. Such an approach becomes less
effective as mission uncertainty increases. Further, the
architecture offers no support to manage the potentially
complex interactions that may result amongst behaviors,
pushing a greater cognitive burden on behavior developers
and mission planners. This paper describes an automated
onboard planning system to generate robust mission plans
using system state and desired goals. By capturing explicit
interactions between behaviors as plan constraints in the
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Fig 1. An MBARI AUV at sea AUV operators. Our
interest in the near
term is to incorporate decision-making capability to deal
with a range of dynamic and episodic ocean phenomenon
that cannot be observed with scripted plans.

The remainder of this paper is laid out as follows. Section
II lays out the architecture of our autonomy system, section
IIT details the experimental results to date, related work

follows in section IV with concluding remarks in section V.

II. THE T-REX ARCHITECTURE

T-REX (Teleo-Reactive EXecutive) is a goal-oriented
system, with embedded automated planning [14,15] and
adaptive execution. It encapsulates the long-standing notion
of a sense-deliberate-act cycle in what is typically
considered a hybrid architecture where sensing, planning
and execution are interleaved. In order to make embedded
planning scalable the system enables the scope of
deliberation to be partitioned functionally and temporally
and to ensure the current state of the agent is kept consistent
and complete during execution. While T-REX was built for
a specific underwater robotics application, the principles
behind its design are applicable in any domain where
deliberation and execution are intertwined.

Fig. 2 shows a conceptual view of a Teleo-Reactive
Agent. An agent is viewed as the coordinator of a set of
concurrent control loops. Each control loop is embodied in a
Teleo-Reactor (or reactor for short) that encapsulates all
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Fig. 2: A 4-reactor T-REX agent.



details of how to accomplish its control objectives. Arrows

represent a messaging protocol for exchanging facts and

goals between reactors: thin arrows represent observations
of current state; thick arrows represent goals to be
accomplished. Reactors are differentiated in 3 ways:

* Functional scope: indicating the state variables of concern
for deliberation and action.

¢ Temporal scope: indicating the look-ahead window over
which to deliberate.

* Timing requirements: the latency within which this
component must deliberate for goals in its planning
horizon.

Fig. 2 for example, shows four different reactors; the
Mission Manager provides high-level directives to satisfy
the scientific and operational goals of the mission: its
temporal scope is the whole mission, taking minutes to
deliberate if necessary. The Navigator and Science Operator
manage the execution of sub-goals generated by the Mission
Manager. The temporal scope for both is in the order of a
minute even as they differ in their functional scope. Each
refines high-level directives into executable commands
depending on current system state. The Science Operator is
able to provide local directives to the Navigator. For
example if it detects an ocean front it can request the
navigation mode to switch from a Yo-Yo pattern in the
vertical plane to a Zig-Zag pattern in the horizontal plane, to
have better coverage of the area. Deliberation may safely
occur at a latency of 1 second for these reactors. The
Executive provides an interface to a modified version of the
existing AUV functional layer. It encapsulates access to
commands and vehicle state variables. The Executive is
reasonably approximated as having zero latency within the
timing model of our application since it will accomplish a
goal received with no measurable delay, or not at all; in
other words it does not deliberate.

T-REX has a central and explicit notion of time with all
reactors synchronized by an internal clock. The unit of time
is a tick, defined in external units on a per application basis;
tick boundaries signify when synchronization of all reactors
must occur while between ticks reactors may deliberate. The
agent-state is represented as a set of timelines, which capture
the evolution of a system state-variable over time. A
timeline is a sequence of tokens that are temporally qualified
assertions expressed as a predicate with start and end time
bounds defining the temporal scope over which it holds. The
minimum duration of a token is a tick giving a discrete
synchronous view of the state of the world. Token start and
end times can be defined as intervals to express temporal
flexibility.

Agent timelines are distributed across reactors depending
on their functional scope. Information exchange between
reactors, where necessary, is provided through the following
mechanisms:

* Explicit timeline ownership: Each timeline is owned by
exactly one reactor. Any reactor may request a new goal,
or replan such requests in the event of a change of plan;
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but only the owner of the timeline can decide what goal to

instantiate.

* Observations: capture the current value of a timeline.
Observations are asserted by the owner of a timeline.

* Goals: express a desired future timeline value. They offer
a way to delegate a task to a reactor. Goals are requested
for expansion into sub-goals or commands and can be
recalled on plan changes when replanning is triggered.

* Dispatch and notification rules: define when information
must be shared to ensure consistency and completeness of
agent state at the execution frontier and to allow sufficient
time for deliberation.

The mapping between reactors and timelines is the basis for

sharing information. If a reactor owns a timeline it is

declared internal to that reactor; if it uses a timeline to
observe values and/or express requirements it is declared
external to that reactor. Fig. 3 illustrates the flow of
information in a system containing 3 reactors: The Mission

Manager keeps track of science goals to give directives to

the Navigator using the Path external timeline. The

Navigator manages the navigation of the AUV with one

internal timeline and three external timelines. The

navigation route is used to select the appropriate commands
to send to the Executive as an internal timeline while

Position and Attitude timelines capture AUV navigation

data. A Command timeline captures the command state of

the Executive. These external timelines are internal to the

Executive in turn. The Command timeline values are the

actual commands that are managed by the AUV functional

layer. The content of this last timeline at the execution
frontier corresponds to the currently active behavior.

To ensure a complete and consistent view of system state,
the T-REX information exchange framework needs to
impose further restrictions on the way timelines,
observations and goals can be used:

* No ’holes’ are allowed at the execution frontier i.e. all
timelines must have a value at the end of the current tick.

* If no update is provided via an observation, and in the
absence of information to the contrary, a reactor assumes
the previous value(s) on the timeline is/are still valid. We



refer to this as the Inertial Value Assumption since it
conveys some inherent inertia of current values.
Contradictory information can come from the model or
from a new observation. This has important implications
for reducing the cost of synchronization since observations
need only be published as timeline values change.

¢ At the end of the current tick, all observations must be
consistent, by requiring all reactors to hold the same view
at the execution frontier.

* The past is monotonic. All tokens that have finished or
that have started but have yet to finish (i.e. they span the
execution frontier) can only be restricted in time.

* An observation received at a tick applies to that tick only.
It cannot refer to the past except by restricting the values
of a token that is actually running (i.e. with an end time in

handleTick(tick){
synchronize (tick);
dispatchGoals(tick);
done = false;
while(!done && currentTick() == tick)
done = stepNextReactor(tick);}

Fig. 4: The T-REX agent algorithm

the future). It cannot refer to the future, as it would then be

a goal, rather than observed reality.

The algorithm at the heart of a T-REX agent in Fig. 4 is
called at the start of every tick. There are three key steps in
the algorithm; first, all timelines are synchronized at the
current execution frontier which is followed by the dispatch
of goals. And finally, the remaining CPU time can be
allocated to reactors for deliberation in incremental steps.
Each of these component algorithms operates over the entire
set of reactors.

A. Synchronization

The goal of synchronization is to produce a consistent and
complete view of agent state at the execution frontier. All
reactors synchronize at the same rate — once per tick. While
this may seem onerous, the actual cost of synchronization is
based on how much information has actually changed. For
example, in Fig. 3. the Position timeline is relatively volatile
and will likely change on every tick. However, the Path
timeline may hold a single value for many ticks. In this case,
as a result of the Inertial Value Assumption, if no new
observation is received, the Path timeline will extend its
current value simply by incrementing the lower bound of the
end time of the current value.

The strict rules of timeline ownership enable a clear
policy for conflict resolution: observations dominate
expectations. For example, if the Navigator expected the
vehicle depth to be less than 0.3m in order in order to obtain
a GPS fix but the actual depth observed by the Executive is 1
meter, then the expected value is discarded. This may impact
plan feasibility and force the Navigator to find an alternative
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solution by rejecting the current plan.

To ensure global consistency the agent undertakes local
synchronization of the reactors until quiescence. In principle,
this operation is equivalent to solving a planning problem
over the set of all internal timelines for a planning horizon
restricted to a tick. If a reactor has an external timeline, it
depends on its owner for such consistency. In this way the
reactors form a dependency graph which in practice we
require to be acyclic, allowing ordering of synchronization
for purposes of efficiency.

B. Dispatching Goals

Where observations are the driver for reaction, goals are
the driver for deliberation. The purpose of dispatching is to
task reactors with new goals in a timely manner. To
accomplish this, T-REX provides explicit parameters and
rules to govern dispatching.

* A - The latency of the reactor or the worst-case number of
ticks to deliberate over a request.

* t - The planning horizon of the reactor quantifying the
look-ahead for deliberation.

* t - The execution frontier expressing the boundary
between the past and the future.

To understand the implications of the above parameters,
consider the example given in Fig. 5. To satisfy the goal
Go(31.73, -121.80, 100) in its Path timeline the Navigator
decides that it needs the vehicle to descend(100) at tick 10
for a duration between 50 and 55 ticks and then to achieve
waypoint(31.73,-121.80) on successful termination of
descend. Since the Executive is the owner of the Command
timeline, these two goals need to be dispatched by the
Navigator to the Executive so that the latter can resolve
them. The importance of A is to ensure the Executive has
sufficient time to complete deliberation prior to starting the
requested goal. If the start-time for a goal dispatched to the
Executive at t were necessarily less than T+Ag. the
Executive may be unable to deliberate to resolve the goal,
leading to a plan failure.

Since the planning window of the Executive is Ttgxec, the
Executive should receive all goals that can start before
T+HAgxectTExee. This will enable the Executive to leverage as
much information as it can handle in making judicious
decisions on how to accomplish the goals requested. Sending
a goal with a start time strictly greater than THAgxecTTExec
will not be considered by the Executive. Moreover, such
dispatch incurs a cost for transmission of information and
may over-commit the Navigator unnecessarily.



Therefore the general rule is that the dispatching window
for a timeline is a time window that depends on the latency
and the look ahead of the reactor owning the timeline. This
dispatch window, Hp, is therefore defined by:

Hp=[t+A, T+ A+m]

This implies that as soon as the start time of a goal on an
external timeline intersects Hp, it is dispatched to the owner
of the timeline. This rule is necessary and sufficient to
ensure that each reactor has sufficient time (A) and
information (;t) to deliberate on goals provided by other
reactors. In our implementation, we have an Executive,
which is purely reactive and therefore Aggee = Tgxee = 0
implying that the FExecutive does not plan beyond the
execution frontier.

C. Deliberation

The framework presented thus far makes the details of
deliberation an internal concern for each reactor even if it
has to capture different functional and temporal scope. Our
own implementation of T-REX uses a Constraint-based
Temporal Planning approach based on EUROPA-2 [10,11]
employing a declarative model-based paradigm. The model
describes state variables (e.g. position, battery level) and
actions (e.g. ascend, descend, getGPS, takeWaterSample) of
the system. Constraints can be specified to enforce
relationships between state variables. For example, it is
convenient to represent the vehicle as being at the surface, or
not, which can be captured with a boolean state variable (e.g
AtSurface). We define a relationship between this variable
and the deph of the vehicle as follows: if depth <= 0.3 then
AtSurface = true. The model also describes constraints
between states and actions. For example, the vehicle must be
at the surface during getGPS. A sample domain model is
shown in Fig. 6 with the Path timeline having two predicates
At and Go; the example rules in the parameter specification
express the constraint that to be at a location, the AUV needs
to go to that coordinate and the position must be maintained
for a temporal interval that is consistent with the rest of the
model. A T-REX agent uses a single model for control at
various levels of abstraction and at various speeds of
execution. Different reactors reference subsets of this model
according to their functional scope.
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specialization of a
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Fig. 6: A domain model in T-REX
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goals based on the

semantics of

internal and external timelines and the rules of information
exchange. It is an extension of the EUROPA-2 plan
database, augmented for specialized buffering for efficient
access to timeline data for dispatch and synchronization and
manages state information. Model rules are applied
automatically through a combination of propositional
inference and constraint propagation [21], to check
consistency and prune infeasible elaborations of the plan
maintained in the database. The Synchronizer is a
specialized configuration of a EUROPA solver operating
over a l-tick horizon. It accomplishes local consistency and
completeness. The database propagates the results of
synchronization to the future. The Dispatcher is a simple
algorithm that publishes goals to owner reactors of its
external timelines according to the dispatch semantics
previously defined. Finally, the Planner is yet another
instance of a EUROPA solver used to deliberate over the
specified temporal and functional scope of the reactor using
a heuristic based chronological backtracking search for
partial plan refinement. These entities together are used
under different configurations for the Mission Manager,
Science Operator and Navigator shown in the example in Fig
3. Further details on EUROPA can be found in [10,11].

III. EXPERIMENTAL RESULTS

Our experiments with T-REX at sea involved using two
onboard computers on our AUV: a main vehicle computer a
244 Mhz PC/104 stack running the QNX real-time operating
system running the functional layer, and a separate 367 MHz
EPIC EPX-GX500 AMD Geode stack running Linux and T-
REX. Communication between T-REX and the functional
layer computer was with a socket-based protocol allowing
the exchange of goals and state updates. For validation
purposes we initially ran experiments on a high-fidelity
AUV simulator based on [13] which captures vehicle
dynamics to validate our missions. Sea trials with T-REX
onboard an AUV
were in  the
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discuss one such mission among many executed at sea,
where we focused on demonstrating nominal mission
scenarios where scientists orient observations along specific
legs.

One such set of legs was encoded as a graph located in
the northern end of the Bay (Fig. 8). Such a representation
has a number of distinct advantages; first it accurately
predicts lower bounds on traversals from one node in the
graph to another and thereby quantifies time and resources
towards goal achievement (or for shedding over-subscribed
goals). Second, it allows us to naturally deal with shortest
path computations using our planner’s existing constraint
network algorithms and representation. Finally it allows
scientists to clearly represent their requirements in a
compact representation not unlike existing transect patterns
with the important addition of specifying meta-level features
such as goal priorities without concern for how the AUV
would achieve these goals.

In Fig. 9, the goal of the mission was to head to the south
node of such a traversal graph. The straight-line transect
planned was repeatedly interrupted in-situ during
deliberation, with check-in windows forcing the vehicle to
surface every 100 seconds with at least 40 seconds at the
surface. The dynamics of the vehicle [24] resulted in the
vehicle to damp its downward decent by compensating on its
pitch axis prior to a straight and level move thru the water
column. This was soon followed by an ascend to the surface
for a GPS fix followed by a short burst by the AUV to
accelerate to depth. The mission goals are decomposed to
those on the navigation timeline as a series of Go(South)
followed by check-in tokens. Further decomposition of the
Go activity in turn, results in setpoint, descend and waypoint
tokens also within the Navigator. The waypoint token tries
to achieve reaching the South node; however the 100sec
check-in window constraint preempts the achievement of
this traversal making the AUV surface.These series of
actions are successively generated till an observation from
the executive determines that the vehicle is indeed at the
South node. Within each set of these setpoint, descend and
waypoint tokens there is an important issue T-REX has to
deal with in terms of execution uncertainty; in this case the
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descend token however need to be able to reasonably
encapsulate such variations which in practice are already
considered when scripting plans a priori.

Fig. 11 shows the CPU wusage and the impact of
synchronization and deliberation that lead to changes in
multiple reactors. The spikes shown correspond to a
dynamic plan repair associated with the insertion of a check-
in window. When the Executive terminates the waypoint
activity, an observation is returned comparing the Goto
location (South in metric units) with the (open-loop)
distance traversed by the vehicle. If the vehicle is not at its
desired Goto location, an additional Goto goal will be
generated to make up the difference. The most common
reason for waypoint terminating before reaching the target
destination is due to duration constraints imposed by a
check-in window. The Navigator inserts a check-in goal and
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further decomposes the goal in-situ as mentioned above into
ascend, getgps and setpoint activities as needed. If on
completion of a waypoint the vehicle is within an expected
distance of its target location the Navigator will terminate
the higher-level navigation goal. An interesting feature of
the localization activity is the requirement that the AUV stay
on the surface for at least 40 secs. However, as shown in the
second check-in window in Fig. 11, when the vehicle is able
to obtain a GPS fix well under this time limit the planner
reactively inserts an Idle activity.

Fig. 12 illustrates a longer mission where T-REX received
the goals to be Af the West node and then GoTo the North
node starting from the South node in the traversal graph. As
before, we see the Navigator refining these goals with an
interesting twist; when the AUV is at the West node, T-REX
realizes that it had sufficient time to start the new goal
before the next check-in and inserted a Go(North) token for
the remaining duration. Such opportunistic decision-making
is unrealizable with scripts designed a-priori and clearly
demonstrates advantages of onboard deliberation. Additional
data on T-REX test results can be found at [25].

IV. RELATED WORK

T-REX is inspired from IDEA [16,17], which in turn is
based on ideas in the Remote Agent Experiment (RAX)
[14,15]. T-REX is similar to both in its formulation of a
timeline-based representation, and in its use of planning and
execution at its core. It is distinct from IDEA primarily in its
formulation for exchanging and synchronizing state between
reactors. The Autonomous Sciencecraft Experiment [18]
conceptually borrows from RAX. The CASPER planner is
not directly embedded in the execution as in T-REX.
Further, temporal flexibility within and deals only with
grounded plan representation. The 3-layered LAAS
architecture [19] provides decisional capabilities using a
constraint-based symbolic planner integrated with reactive
components. However its disparate components are
manipulating different representations using heterogeneous
modeling languages. Such an approach tends to make system
design and integration difficult [20]. In contrast, although T-
REX’s design leads to factoring of computation into layers,
in practice a hierarchical structure is not inherent, nor is
deliberation required or prohibited for any layer.

While a number of control architectures have been built
for AUV control [1,8] T-REX’s design philosophy is closest
to DAMN [22] and ORCA [23]. DAMN is a reactive
Subsumption based architecture with no inherent
deliberation. ORCA wuses schemas within a case-based
planning framework; however the efficacy of ORCA’s
approach is unclear in terms of scalability in the number of
schemas since the literature does not indicate whether the
system was actually fielded on an AUV. Further there is no
indication that it reasons explicitly with time and resources.

V. CONCLUSIONS AND FUTURE WORK

Our results to date show that onboard planning and
execution within the T-REX framework can handle

uncertainty in the sub-sea domain gracefully well within the
computational capacity available on our AUV’s. Our
immediate next steps are to integrate resource constraints for
deliberation in goal selection and to demonstrate dynamic
re-planning onboard the vehicle to adapt to science
observations opportunistically to enable characterization of
dynamic and episodic phenomenon such as ocean Fronts and
Thin Layers.
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