
Open Source Aerial Vehicles
IROS 2014
September 14, 2014

Tully Foote

“...to support the
development, distribution,
and adoption of open source
software for use in robotics
research, education, and
product development.”

http://osrfoundation.org

http://osrfoundation.org
http://osrfoundation.org

OSRF Sponsors

Gazebo: 3-D simulation

Electronics and firmware

OSRF Projects

ROS

*.com

and friends

=

Movie: 5 years of ROS

http://www.youtube.com/watch?v=PGaXiLZD2KQ

Common Platforms

● Turtlebot
● Clearpath Husky
● Nao
● PR2
● Embedded:

○ Gumstix
○ Raspberry Pi

Photos: from manufacturer websites

Uses of ROS in Aerial Vehicles: Videos

Berkeley

UPenn
CCNY

http://www.youtube.com/watch?v=2gz_W6R_Qpc
http://www.youtube.com/watch?v=TjQPHprBTPs
http://www.youtube.com/watch?v=eWmVrfjDCyw

Uses of ROS in Aerial Vehicles: Packages

● mavlink2ros
○ https://github.com/posilva/mav2rosgenerator

● mav_tools
○ http://wiki.ros.org/mav_tools

● CRATES
○ https://bitbucket.org/asymingt/crates

● roscopter
○ https://code.google.com/p/roscopter/

● hector_quadcopter
○ http://wiki.ros.org/hector_slam

● rospilot
○ https://github.com/rospilot/rospilot

● asctec_mav_framework
○ http://wiki.ros.org/asctec_mav_framework

https://github.com/posilva/mav2rosgenerator
https://github.com/posilva/mav2rosgenerator
http://wiki.ros.org/mav_tools
https://bitbucket.org/asymingt/crates
https://bitbucket.org/asymingt/crates
https://code.google.com/p/roscopter/
https://code.google.com/p/roscopter/
http://wiki.ros.org/hector_slam
http://wiki.ros.org/hector_slam
https://github.com/rospilot/rospilot
https://github.com/rospilot/rospilot
http://wiki.ros.org/asctec_mav_framework
http://wiki.ros.org/asctec_mav_framework

● Small payloads, minimal computation available
○ Newer SBC options much higher power
○ To get the minimum functionality often ends up with custom

small implementation
● Many very different configurations

○ Basic controls are not standardized/generalized
● Black box interfaces from hardware manufacturers

Challenges of Aerial Robotics

Thanks to the sponsorship of Qualcomm we will be setting up official
Ubuntu ARM packages to support the new generation of ARM SBC.
Announced yesterday at ROSCon: http://www.osrfoundation.org/open-source-robotics-foundation-to-extend-ros-support-to-
qualcomm-snapdragon-processors.html

Binary ARM Packages Coming Soon

Features of interest to aerial robotics
● Modern API, minimal dependencies, and better portability
● Benefits of underlying DDS middleware

○ Reliability QoS settings
○ UDP Multicast, shared memory, TLS over TCP/IP
○ Real-Time capable
○ Master-less discovery
○ Minimal dependencies (Current DDS vendors have none)

● Easier to work with multiple nodes in one process
● More dynamic run-time features like topic remapping and aliasing
● Lifecycle management and verifiable systems
● And so many other things we don’t have time to cover here…

○ Dynamic parameters
○ Synchronous, scheduled execution of nodes (the ecto problem)
○ More efficient package resource management

Upcoming features in ROS 2.0

● Very standard maps
○ Shared reporting points, shared references
○ Never fly without a map
○ Map has a bunch more information than just collision info

■ Radio frequencies, notes, reference points
● Very standard anti-collision protocols

○ Automatic tools, ADS-B
○ ATC/ Self reporting mechanism
○ Traffic patterns

● Completely standard controls inputs
○ Stick + collective + pedals or stick + throttle + rudders
○ Pilot can move between vehicles

■ Local knowledge
■ FBO chatting

● Differences are in standard procedures written down completely
(startup/shutdown checklists, emergency procedures)

Insights as a human pilot

Mobile Platform:
CoordinateFrames:

http://www.ros.org/reps/rep-0105.html
Generic 2d navigation interface:

http://wiki.ros.org/nav_core
http://wiki.ros.org/navigation/Tutorials/RobotSetup

Humanoid Coordinate Frames:
http://www.ros.org/reps/rep-0120.html

Examples of standardization in other fields

http://www.ros.org/reps/rep-0105.html
http://wiki.ros.org/nav_core
http://www.ros.org/reps/rep-0120.html

● What would be required to standardize?
● What common interfaces can be defined?
● Can there be a standard Hardware Abstraction Layer?
● Can we standardize enough to setup unit tests, continuous

integration, and possibly performance tests in simulation?
● How can we promote communication and visibility for collaboration?
● What would be the flying LAMP?

My questions for the community

